The Mathematics of Ion Saliu's Paradox

$$
1-\frac{1}{e}=.632120558828558 \ldots
$$

By Ion Saliu

We start with one of the steps leading to the Fundamental Formula of Gambling (FFG):

$$
1-\mathrm{DC}=(1-\mathrm{p})^{\mathrm{N}}
$$

DC represents the degree of certainty, \mathbf{p} represents the probability, and \mathbf{N} represents the number of trials.

We can express the probability as $\mathbf{p}=\frac{\mathbf{1}}{\mathbf{N}}$; e.g. the probability of getting one point face when rolling a die is 1 in 6 or $\mathbf{p}=\frac{\mathbf{1}}{\mathbf{6}}$

It is common sense that if we repeat the event N times we expect one success. That might be true for an extraordinarily large number of trials. If we repeat the event N times, we are NOT guaranteed to win. If we play roulette 38 consecutive spins, the chance to win is significantly less than 1 !

$$
1-D C=\left(1-\frac{1}{N}\right)^{N}
$$

$$
1-\mathrm{DC}=\frac{1}{\mathrm{e}}
$$

Thusly:

$$
\mathrm{DC}=\lim \left(1-\frac{\mathbf{1}}{\mathbf{e}}\right)=.632120558828558 \ldots
$$

Soon after I published my glorious page on theory of probability (in 2004), the adverse reactions were instantaneous. I even received multiple hostile emails from the same individual! Basically, they considered my $\frac{\mathbf{1}}{\mathbf{e}}$ discovery as idiocy! "You are mathematically challenged", they were cursing! Guess, what? I saw in 2012 an edited page of Wikipedia (e constant) where my $\frac{\mathbf{1}}{\mathbf{e}}$ discovery is considered correct mathematics. Of course, they do not give me credit for that. Nor do they demonstrate mathematically the $\frac{\mathbf{1}}{\mathbf{e}}$ relation - because they don't know the demonstration (as of March 21, 2012)!

You see the mathematical proof right here, for the first time.
$e=\left(1+\frac{1}{N}\right)^{N}$

Let's demonstrate that:

$$
\left(1-\frac{1}{N}\right)^{N}=\frac{1}{e}=\frac{1}{\left(1+\frac{1}{N}\right) N}
$$

If 2 relations are equal, then their $N t h$ roots are also equal:

$$
\begin{gathered}
\left(1-\frac{1}{N}\right)=\frac{1}{\left(1+\frac{1}{N}\right)} \\
\lim \left(1-\frac{1}{N}+\frac{1}{N}-\frac{1}{N^{\wedge} 2}\right)=\lim \left(1-\frac{1}{N^{\wedge} 2}\right)=1
\end{gathered}
$$

when \mathbf{N} tends to Infinity. Therefore:

$$
\left(1-\frac{1}{N}\right)^{N}=\frac{1}{e}
$$

QED.
Theory of Probability: Introduction, Formulas, Software, Algorithms
Mathematics, Probability, Logarithms of Fundamental Gambling Formula

