The Mathematics of Ion Saliu’s Paradox

\[1 - \frac{1}{e} = .632120558828558... \]

By Ion Saliu

We start with one of the steps leading to the **Fundamental Formula of Gambling (FFG)**:

\[1 - DC = (1 - p)^N \]

DC represents the **degree of certainty**, **p** represents the **probability**, and **N** represents the **number of trials**.

We can express the probability as \(p = \frac{1}{N} \); e.g. the probability of getting one point face when rolling a die is **1 in 6** or \(p = \frac{1}{6} \)

It is common sense that if we repeat the event \(N \) times we expect one success. That might be true for an extraordinarily large number of trials. If we repeat the event \(N \) times, we are NOT guaranteed to win. If we play roulette 38 consecutive spins, the chance to win is significantly less than 1!

\[1 - DC = (1 - \frac{1}{N})^N \]

I noticed that \((1 - \frac{1}{N})^N \) has a limit: \(\frac{1}{e} \) (\(e \) is the base of the **natural logarithm (In)**).

\[1 - DC = \frac{1}{e} \]

Thusly:

\[DC = \lim (1 - \frac{1}{e}) = .632120558828558... \]
Soon after I published my glorious page on theory of probability (in 2004), the adverse reactions were instantaneous. I even received multiple hostile emails from the same individual! Basically, they considered my $\frac{1}{e}$ discovery as idiocy! “You are mathematically challenged”, they were cursing! Guess, what? I saw in 2012 an edited page of Wikipedia (e constant) where my $\frac{1}{e}$ discovery is considered correct mathematics. Of course, they do not give me credit for that. Nor do they demonstrate mathematically the $\frac{1}{e}$ relation — because they don’t know the demonstration (as of March 21, 2012)!

You see the mathematical proof right here, for the first time.

$$e = (1 + \frac{1}{N})^N$$

Let’s demonstrate that:

$$\left(1 - \frac{1}{N}\right)^N = \frac{1}{e} = \frac{1}{(1 + \frac{1}{N})^N}$$

If 2 relations are equal, then their Nth roots are also equal:

$$\left(1 - \frac{1}{N}\right) = \frac{1}{(1 + \frac{1}{N})^N}$$

$$\lim(1 - \frac{1}{N} \pm \frac{1}{N} - \frac{1}{N^2}) = \lim(1 - \frac{1}{N^2}) = 1$$

when N tends to Infinity. Therefore:

$$\left(1 - \frac{1}{N}\right)^N = \frac{1}{e}$$

QED.